Water Complexation as a Means of Stabilizing the Metastable HO_{3} Radical

Simone Aloisio and Joseph S. Francisco*
Contribution from the Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907

Received March 29, 1999. Revised Manuscript Received June 9, 1999

Abstract

The metastable intermediate HO_{3} is found to be stabilized by formation of a complex with water. We have calculated the geometry and energy of the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex, which is $6.5 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy than isolated HO_{3} and $\mathrm{H}_{2} \mathrm{O}$.

I. Introduction

The reaction

$$
\begin{equation*}
\mathrm{H}+\mathrm{O}_{3} \rightarrow \mathrm{OH}+\mathrm{O}_{2} \tag{1}
\end{equation*}
$$

is an important reaction in the study of atmospheric chemistry. It has been the topic of many experimental ${ }^{1-10}$ and theoretical ${ }^{11-17}$ studies. Both have produced evidence that the reaction goes through a metastable intermediate, HO_{3}; but no studies have reported the isolation or characterization of HO_{3}.

The question of whether HO_{3} is stable enough to be isolated has been the subject of some debate in the literature. Even in the most recent studies, ${ }^{13,15-17}$ a wide range of stabilities with respect to the products of reaction $1\left(\mathrm{OH}\right.$ and $\left.\mathrm{O}_{2}\right)$ have been reported. Mathison et al. ${ }^{13}$ state that the HO_{3} minimum is 27.2 kcal mol^{-1} above the products using their computed SCF data with no electron correlation. Dupuis et al. ${ }^{15}$ calculate that HO_{3} is $13.8 \mathrm{kcal} \mathrm{mol}^{-1}$ below OH and O_{2} using Multi-Configuration Hartree-Fock (MCHF) methods. Vincent and Hillier ${ }^{16}$ then used Quadratic Configuration Interaction methods including singles and doubles (QCISD) to optimize geometries, then adding triples

[^0]$[\mathrm{QCISD}(\mathrm{T})]$ to obtain energies. They calculated that HO_{3} is 1.2 kcal mol^{-1} above the products of reaction 1 . A recent study by Jungkamp and Seinfeld ${ }^{18}$ predicts HO_{3} to be $1.15 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than OH and O_{2}. They also calculate the heat of formation $\left(\Delta H_{\mathrm{f}}^{298}\right)$ of HO_{3} to be $6.1 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Most recently, Varandas and Yu^{17} used Unrestricted Configuration Interaction methods including singles and doubles (UCISD) to calculate HO_{3} as being $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than OH and O_{2}, and $\Delta H_{\mathrm{f}}^{298}$ to be $11.6 \mathrm{kcal} \mathrm{mol}^{-1}$. Speranza ${ }^{19}$ studied hydrogen trioxide ion $\left(\mathrm{HO}_{3}{ }^{+}\right)$using Fourier Transform Ion Cyclotron Resonance (FT-ICR) spectrometry, and from that data, measured a $\Delta H_{\mathrm{f}}{ }^{298}$ for HO_{3} of $-1 \pm 5 \mathrm{kcal} \mathrm{mol}^{-1}$.

Sridharan et al. ${ }^{20}$ showed that a metastable HO_{3} intermediate is involved in the reaction,

$$
\begin{equation*}
{ }^{18} \mathrm{O}+\mathrm{HO}_{2} \rightarrow \mathrm{OH}+\mathrm{O}_{2} \tag{2}
\end{equation*}
$$

through an elegant laser induced fluorescence (LIF) experiment. By isotopic labeling of the oxygen atom, they were able to determine whether reaction 2 went through a simple hydrogen abstraction or if it proceeded through the HO_{3} intermediate. The simple hydrogen abstraction path would yield ${ }^{18} \mathrm{OH}$ as the primary product. This was not found to be the case. In fact, large signals for ${ }^{16} \mathrm{OH}$ were observed, signaling that the reaction must go through the HO_{3} intermediate. A detailed theoretical study of the reaction dynamics and kinetics of reaction 2 has been published by Wang and co-workers. ${ }^{21}$

In this work, we explore the possibility of stabilizing HO_{3} through the formation of a complex with water. The reaction for this formation is given below.

$$
\begin{equation*}
\mathrm{HO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O} \tag{3}
\end{equation*}
$$

Due to the small difference in energy between HO_{3} and its dissociation products, the concept we put forward is that water complexation may provide a stabilizing effect for the HO_{3} radical.

[^1]Table 1. Optimized Geometries for HO_{3}

species	coordinate ${ }^{a}$	B3LYP				
		6-31G(d)	$6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-311++\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$	$6-311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$	$6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$
trans HO_{3}	HO^{\prime}	0.979	0.972	0.971	0.971	0.970
	$\mathrm{O}^{\prime} \mathrm{O}^{\prime \prime}$	1.541	1.565	1.549	1.545	1.543
	$\mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	1.246	1.230	1.235	1.232	1.230
	$\mathrm{HO}^{\prime \prime} \mathrm{O}^{\prime \prime}$	97.5	98.4	98.4	98.6	98.6
	$\mathrm{O}^{\prime} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	110.1	110.5	110.2	110.3	110.2
	$\mathrm{HO}^{\prime} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	180.0	180.0	180.0	180.0	180.0
cis HO_{3}	HO^{\prime}	0.982	0.975	0.974	0.973	0.973
	$\mathrm{O}^{\prime} \mathrm{O}^{\prime \prime}$	1.504	1.519	1.508	1.504	1.502
	$\mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	1.261	1.248	1.252	1.249	1.247
	$\mathrm{HO}^{\prime \prime} \mathrm{O}^{\prime \prime}$	98.8	100.3	99.8	100.0	99.9
	$\mathrm{O}^{\prime} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	112.2	113.0	112.7	112.8	112.7
	$\mathrm{HO}^{\prime} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	0.0	0.0	0.0	0.0	0.0

${ }^{a}$ All bond distances are given in angstroms. All angles and dihedrals are given in degrees.

II. Computational Methods

All calculations were performed using the GAUSSIAN 94^{22} suite of programs. Geometries were optimized using the Becke threeparameter hybrid functional combined with the Lee, Yang, and Parr correlation [B3LYP] ${ }^{23}$ density functional theory method. This method has been shown to produce reliable results for hydrogen-bonded complexes when compared with other methods. ${ }^{24-26}$ Basis sets employed are $6-31 \mathrm{G}(\mathrm{d}), 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p}), 6-311++\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p}), 6-311++\mathrm{G}-$ ($2 \mathrm{df}, 2 \mathrm{p}$), and $6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$. Frequency calculations were also performed at this level of theory. Zero-point energies taken from these frequency calculations can be assumed to be an upper limit due to the anharmonic nature of the potential energy surface. Furthermore, singlepoint energies using the optimized geometries were calculated using Coupled Cluster theory including singles, doubles, and triples [CCSD(T) $]^{27}$ using all basis sets but the largest one.

III. Results and Discussion

A. Geometry and Vibrational Frequencies. We have found two stable geometries for the HO_{3} molecule. Both are planar, one in a cis and the other in a trans configuration. The geometries for these isomers is listed in Table 1. Other researchers ${ }^{11,13,15,17}$ have optimized a more stable isomer in which the hydrogen atom is out of plane with respect to the three oxygen atoms. This configuration was not found to be a minimum in our calculations. The equilibrium geometry we have calculated is in good agreement with the previous calculations of Vincent and Hillier, ${ }^{16}$ which predict a planar minimum. Those researchers used levels of theory as high as QCISD(T)/ $6-311++G(2 d, p)$ in their calculations.

For the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex, an optimized structure was obtained consisting of a six-membered ring of the HO_{3} molecule and an $\mathrm{O}-\mathrm{H}$ of the water molecule. The remaining H atom is out of plane with respect to the ring. This is shown in Figure 1. The primary interaction is between the O (hydrogen acceptor) on the water and the H (hydrogen donor) on the HO_{3}. The bond distance between these two atoms is calculated to be $1.782 \AA$

[^2]

Figure 1. The structure of $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$.
at the B3LYP/6-311++G(3df,3pd) level of theory. We can compare this to other HO_{x} complexes with water. Xie and Schaefer ${ }^{28}$ have found that OH makes a bimolecular complex with water in which the hydroxyl radical is the hydrogen donor and the water the hydrogen acceptor. The intermolecular bond distance they found was calculated to be $1.94 \AA$. In our laboratory, ${ }^{29}$ we have calculated a structure for an $\mathrm{HO}_{2}-\mathrm{H}_{2} \mathrm{O}$ complex that has a similar ring structure as $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$. In that case, the hydroperoxyl hydrogen donor-to-water bond distance was calculated to be $1.781 \AA$. This is virtually identical with the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex. There also may be a weak interaction between the terminal oxygen of HO_{3} and the in-plane hydrogen atom of water. The distance between these atoms is $2.475 \AA$. By contrast, in $\mathrm{HO}_{2}-\mathrm{H}_{2} \mathrm{O}$ the distance between the terminal oxygen of HO_{2} and the in-plane hydrogen atom of water is 2.406 \AA. The HO_{3}, when complexed with water, is in the cis configuration. Just as in the isolated HO_{3}, when complexed, the bond between the terminal O and the middle O is shorter than the bond between the O bonded to hydrogen and the middle bond. It should be noted, however, that the $\mathrm{O}^{\prime \prime}-\mathrm{O}^{\prime \prime \prime}$ bond is slightly longer in the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex than in the isolated HO_{3}, while the $\mathrm{O}^{\prime}-\mathrm{O}^{\prime \prime}$ bond is slightly shorter. The geometry for $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ is listed in Table 2.

The rotational constants for the isolated parent monomers, as well as those for the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex, are shown in Table 3. It can be seen that $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ is an asymmetric rotor since A $\neq B \neq C$. It is almost an oblate top since $A \neq B \approx C$ (11600, 4269 , and 3148 respectively) and $A>B$. This is consistent with a six-membered ring and out-of-plane hydrogen structure shown in Figure 1.

The $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex has nine intramolecular vibrational modes that are common to those of the isolated parent monomers (six from HO_{3} and three from $\mathrm{H}_{2} \mathrm{O}$). There are an additional six intermolecular modes unique to the complex. The calculated band centers and band strengths of these modes are listed in Table 4, along with the same information for the isolated monomers. The nine vibrational modes with the largest frequen-

[^3]Table 2. Optimized Geometry for $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$

coordinate ${ }^{a}$	B3LYP				
	6-31G(d)	$6-311++G(d, p)$	$6-311++(2 d, 2 p)$	6-311++(2df,2p)	$6-311++(3 d f, 3 \mathrm{pd})$
R1	1.738	1.780	1.794	1.786	1.782
R2	2.226	2.548	2.596	2.488	2.475
$\mathrm{H}^{\prime} \mathrm{O}$	0.974	0.965	0.963	0.962	0.964
$\mathrm{H}^{\prime \prime} \mathrm{O}$	0.971	0.963	0.962	0.964	0.962
HO^{\prime}	1.005	0.992	0.990	0.991	0.991
$\mathrm{O}^{\prime} \mathrm{O}^{\prime \prime}$	1.471	1.487	1.478	1.474	1.472
$\mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	1.276	1.262	1.264	1.262	1.260
$\mathrm{H}^{\prime} \mathrm{OH}^{\prime \prime}$	104.3	106.6	106.1	106.4	106.2
$\mathrm{H}^{\prime} \mathrm{OH}$	90.5	103.1	100.0	98.3	97.3
OHO^{\prime}	174.0	176.4	179.6	177.3	177.9
$\mathrm{HO}^{\prime} \mathrm{O}^{\prime \prime}$	102.4	102.7	102.5	102.5	102.5
$\mathrm{O}^{\prime} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	114.5	114.2	113.9	114.0	114.0
$\mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime} \mathrm{H}^{\prime \prime}$	114.1	114.7	113.7	114.2	114.4
$\mathrm{O}^{\prime \prime \prime} \mathrm{H}^{\prime \prime} \mathrm{O}$	122.0	107.4	108.7	112.0	112.9
$\mathrm{HO}^{\prime} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime \prime}$	-1.6	-12.9	-9.6	-13.5	-9.8
$\mathrm{H}^{\prime} \mathrm{OHO}{ }^{\prime}$	21.7	-1.9	113.1	3.9	7.6
$\mathrm{H}^{\prime \prime} \mathrm{OHO}^{\prime}$	-83.6	-124.5	-2.1	-111.3	-121.5
$\mathrm{OHO}^{\prime} \mathrm{O}^{\prime \prime}$	-8.3	10.2	-108.5	5.0	12.0

${ }^{a}$ All bond distances are given in angstroms. All angles and dihedrals are given in degrees.
Table 3. Rotational Constants ${ }^{1}$ for $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ and HO_{3}

species		B3LYP				
		6-31G(d)	$6-311++G(d, p)$	$6-311++G(2 d, 2 p)$	$6-31++G(2 d f, 2 p)$	$6-311++G(3 d f, 3 \mathrm{pd})$
$\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$	A	11274	11414	11589	11518	11600
	B	4609	4266	4146	4272	4269
	C	3309	3132	3080	3149	3148
trans HO_{3}	A	73764	74816	74609	75059	75115
	B	11098	10934	11077	11129	11161
	C	9646	9540	9645	9692	9717
cis HO_{3}	A	67934	69505	69102	69556	69688
	B	11672	11494	11625	11672	11702
	C	9961	9863	9951	9994	10020

${ }^{a}$ Rotational Constants are given in MHz .
cies are assigned to the intramolecular modes, while the intermolecular modes are the remaining six. There are some significant shifts in the intramolecular modes with respect to the same modes in the isolated parent monomers. We choose to compare the frequencies in the complex to the cis isomer of HO_{3}, since it most resembles the configuration of HO_{3} in the complex. An examination of the structure in Figure 1 suggests that the most affected modes would be the ones involving the H atom on the HO_{3} because the interaction with the water molecule would be greatest there. This is indeed the case. The $\mathrm{H}-\mathrm{O}^{\prime}$ stretch is shifted to the red by $342 \mathrm{~cm}^{-1}$ relative to isolated HO_{3}. This is larger than the equivalent shifts for $\mathrm{HO}_{2}-$ $\mathrm{H}_{2} \mathrm{O}^{26}$ and $\mathrm{HO}-\mathrm{H}_{2} \mathrm{O},{ }^{25}$ which are 296 and $99 \mathrm{~cm}^{-1}$ to the red, respectively. The band strength of this mode is also increased by a factor of 13.3. This is due to the increase in the dipole moment that is induced by this mode with the addition of the water. The mode that is most shifted however is the $\mathrm{H}-\mathrm{O}^{\prime}-$ $\mathrm{O}^{\prime \prime}$ wag. This mode is predicted to be shifted by $481 \mathrm{~cm}^{-1}$ to the blue. The $\mathrm{H}-\mathrm{O}^{\prime}-\mathrm{O}^{\prime}$ bend is also predicted to be blue shifted by $100 \mathrm{~cm}^{-1}$. Other moderate shifts are in the $\mathrm{O}^{\prime}-\mathrm{O}^{\prime \prime}-\mathrm{O}^{\prime \prime \prime}$ symmetric and asymmetric stretches, which are shifted 59 and $52 \mathrm{~cm}^{-1}$ to the blue, respectively. The magnitudes of these shifts are testament to the strength of the interaction between the $\mathrm{H}_{2} \mathrm{O}$ and HO_{3} molecules in the complex.
B. Relative Energies. We have calculated the energies of the two HO_{3} isomers using density functional theory (B3LYP). We have also taken the geometries calculated by this method and calculated a single-point energy using coupled cluster theory $[\operatorname{CCSD}(\mathrm{T})]$. These calculations are presented in Table 5. The B3LYP full optimization with the $6-311++G(3 d f, 3 p d)$ basis
set predicts that the trans isomer is more stable than the cis isomer by $0.2 \mathrm{kcal} \mathrm{mol}^{-1}$. This is in general agreement with Mathisen et al. ${ }^{13}$ and their calculation of a more stable trans isomer. The $\operatorname{CCSD}(\mathrm{T})$ single-point calculation of the same geometry with the same bass set predicts the cis isomer to be more stable by $0.7 \mathrm{kcal} \mathrm{mol}^{-1}$, however. This agrees with Vincent and Hillier ${ }^{16}$ and Varandas and Yu^{17} in predicting a more stable cis isomer. The main message from all these calculations is that HO_{3} is very weakly bound. Moreover, it is unlikely to be seen directly in experimental studies of reaction 1 or 2 .

We find that the addition of water to form an $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex stabilizes the HO_{3}. The binding energies for this complex are shown in Table 6. We compare the energy of the complex to the cis isomer of HO_{3} because the configuration of HO_{3} in the complex is cis. The B3LYP/6-311++G(3df,3pd) optimization predicts a binding energy $\left(D_{\mathrm{o}}\right)$ of $4.9 \mathrm{kcal} \mathrm{mol}^{-1}$, while the $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$ single point predicts a binding energy of $6.5 \mathrm{kcal} \mathrm{mol}^{-1} . \mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ is more weakly bound than $\mathrm{HO}_{2}-\mathrm{H}_{2} \mathrm{O}$, which has a D_{o} calculated to be 6.2 kcal mol ${ }^{-1}$ at the B3LYP/6-311++G(3df,3pd) optimization. It is more strongly bound than $\mathrm{HO}-\mathrm{H}_{2} \mathrm{O}$, which has a calculated D_{e} of $5.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, compared to $7.0 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{HO}_{3}-$ $\mathrm{H}_{2} \mathrm{O}$ at the B3LYP/6-311++G(3df,3pd) level of theory. Other researchers ${ }^{17}$ have found the nonplanar global minimum for HO_{3} to be about $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy than either of the two isomers calculated in this work. The binding energies calculated for the complex stated above are an order of magnitude larger than that. We therefore think that water will indeed stabilize HO_{3}.

Table 4. Vibrational Frequencies ${ }^{\text {ab, }}$ for HO_{3} and $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$

${ }^{a}$ All frequencies are reported in $\mathrm{cm}^{-1} .{ }^{b}$ All intensities are reported in $\mathrm{km} \mathrm{mol}^{-1}$.

Table 5. Relative Energy of Cis and Trans HO_{3} Isomers ${ }^{a}$

	ΔE^{d}	
basis set	B3LYP b	$\operatorname{CCSD}(\mathrm{~T})^{c}$
$6-31 \mathrm{G}(\mathrm{d})$	-0.7	-0.2
$6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$	0.9	1.7
$6-311++\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$	0.1	-0.6
$6-311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$	0.2	1.0
$6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$	0.2	-0.7

${ }^{a} \Delta E=\left[E\left(\right.\right.$ cis $\left.\mathrm{HO}_{3}\right)-E\left(\right.$ trans $\left.\left.\mathrm{HO}_{3}\right)\right] .{ }^{b}$ From full optimization. ${ }^{c}$ Single point using B3LYP optimized geometry with the same basis set. ${ }^{d}$ All of the energy differences include the differences in zero-point energies.

Table 6. Binding Energies ($\mathrm{kcal} \mathrm{mol}{ }^{-1}$) of the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ Complex

basis set	$\mathrm{B} 3 \mathrm{LYP}^{a}$			$\operatorname{CCSD}(\mathrm{~T})^{b}$	
	D_{e}	D_{o}		D_{e}	D_{o}
$6-31 \mathrm{G}(\mathrm{d})$	11.6	9.1		10.1	7.6
$6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$	8.1	5.9		8.4	6.2
$6-311++\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$	7.1	5.1		7.7	5.7
$6-311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$	6.5	5.0		8.0	6.5
$6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$	7.0	4.9			

${ }^{a}$ From full optimization. ${ }^{b}$ Single point using B3LYP optimized geometry of the same basis set.

Thermodynamic data for the formation of $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ are given in Table 7. The values for water at room temperature were taken from NASA's JPL Publication 97-4. ${ }^{30}$ For HO_{3} and $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}, \Delta H_{\mathrm{f}}{ }^{0}$ was taken from the calculated difference in their internal energies and the published data for OH and O_{2} in ref 30 . These data were extrapolated to other

[^4]Table 7. Thermodynamic Data ${ }^{a-c}$

	species				species			
	$\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$	HO_{3}	$\mathrm{H}_{2} \mathrm{O}$			$\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$	HO_{3}	$\mathrm{H}_{2} \mathrm{O}$
$\Delta H_{\mathrm{f}}{ }^{0}$	-53.2	11.9	-57.1		ΔS^{200}	73.6	59.0	42.6
$\Delta H_{\mathrm{f}}{ }^{200}$	-53.7	11.5	-57.6		ΔS^{300}	81.6	63.1	45.1
$\Delta H_{\mathrm{f}}{ }^{300}$	-54.0	11.3	-57.8		K_{f}^{200}	4.8×10^{-18}		
				K_{f}^{300}	1.8×10^{-20}			

${ }^{a}$ Enthalpy values are given in kcal mol ${ }^{-1}$. ${ }^{b}$ Entropy values are given in cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1} .{ }^{c}$ Formation constants are given in cm^{3} molecule ${ }^{-1}$.
temperatures using Kirchhoff's law:

$$
\begin{equation*}
\Delta H\left(T_{2}\right)-\Delta H\left(T_{1}\right)=\Delta C_{\mathrm{p}} \Delta T \tag{4}
\end{equation*}
$$

where T is the temperature and ΔC_{p} is the difference in heat capacity at constant pressure of the substances whose enthalpy is being calculated to those of the elements in their natural state. The heat capacities and entropies for all the species at 298 K were taken from the output of the ab initio calculations. Differences in heat capacities were assumed to be independent of temperature. Entropies were extrapolated to different temperatures using the following equation:

$$
\begin{equation*}
S\left(T_{2}\right)-S\left(T_{1}\right)=C_{v} \ln \left(T_{2} / T_{1}\right) \tag{5}
\end{equation*}
$$

where C_{v} is the heat capacity at constant volume. At 300 K , $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ has an enthalpy of formation $\left(\Delta H_{\mathrm{f}}{ }^{300}\right)$ of -54.0 kcal mol^{-1}, and an entropy $\left(\Delta S^{300}\right)$ of $81.6 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. This leads to a formation constant $\left(K_{\mathrm{f}}^{300}\right)$ of $1.8 \times 10^{-20} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$, at 300 K for reaction 3 . At lower temperatures, the formation of the complex is favored. At 200 K , the equilibrium constant increases by over a factor of 200 , to $4.8 \times 10^{-18} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$.
From these data, we can estimate the rate constant for dissociation of the complex, using a method first developed by

Troe, ${ }^{31,32}$ and further shown to be effective by Patrick and Golden ${ }^{33}$ for reactions of atmospheric importance. The dissociation constant ($k_{\text {diss }}$) can be described by the following equation:

$$
\begin{equation*}
k_{\mathrm{diss}}=Z_{\mathrm{LJ}} \rho\left(E_{0}\right) R T\left(Q_{\mathrm{vib}}\right)^{-1} \exp \left(-E_{0} R^{-1} T^{-1}\right) F_{\mathrm{E}} F_{\mathrm{anh}} F_{\mathrm{rot}} \tag{6}
\end{equation*}
$$

where Z_{LJ} is the Lennard-Jones collision frequency; $\rho\left(E_{0}\right)$ is the density of states; R is the gas constant; T is the temperature; $Q_{\text {vib }}$ is the vibrational partition function for the associated species; E_{0} is the critical energy; and $F_{\mathrm{E}}, F_{\text {anh }}$, and $F_{\text {rot }}$ are correction terms for the energy dependence of the density of states, anharmonicity, and rotation, respectively. Using this method, we have estimated $k_{\text {diss }}$ at 200 and 300 K to be $1.9 \times$ 10^{-14} and $4.2 \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, respectively.

Using the dissociation constant and the pressure, one can estimate the lifetime of $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ under experimental conditions using the equation:

$$
\begin{equation*}
\tau=\left(k_{\mathrm{diss}}[\mathrm{M}]\right)^{-1} \tag{7}
\end{equation*}
$$

where τ is the lifetime and $[\mathrm{M}]$ is the total number density of molecules. Using the experiment performed by Sridharan et al. ${ }^{20}$ as an example, where $[\mathrm{M}]$ was on the order of 1×10^{17} molecules cm^{3}, the lifetime of $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ would be approximately $2 \mu \mathrm{~s}$ at 300 K if water was used. At lower temperatures, this lifetime can be greatly increased. At 200 K , τ is approximately 500μ s due to the slower dissociation constant. This is sufficient time for the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex to

[^5]be observed experimentally. This can be compared to the lifetime of HO_{3}, which can be as short as 50 fs if unstable, or as long as $0.1 \mu \mathrm{~s}$, if HO_{3} is $1 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than OH and O_{2}.

IV. Conclusion

We have calculated the geometry and energy of a complex between HO_{3} and $\mathrm{H}_{2} \mathrm{O}$. These computations show that by forming a complex with water, HO_{3} is stabilized by about 6.5 $\mathrm{kcal} \mathrm{mol}^{-1}$ as calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p}) / /$ B3LYP/6-311++G(2df,2p) level of theory. We also show that the lifetime of the $\mathrm{HO}_{3}-\mathrm{H}_{2} \mathrm{O}$ complex may be 20 to 500 times longer than that for the HO_{3} monomer under reasonable experimental conditions. We feel that water complexation is significant enough to stabilize this otherwise metastable molecule. More importantly, the results suggest the possibility that similar metastable molecules may be stabilized by water complexation.

Although the consequences this has on atmospheric chemistry are unclear, due to the unknown reactivity of HO_{3}, some speculation can be made. Where water number densities are high, it is likely that $\mathrm{H}_{2} \mathrm{O}$ will stabilize $\mathrm{HO}_{3} . \mathrm{HO}_{3}$ has a sufficient lifetime to react with other molecules. A possible reaction consequence of the HO_{3} reaction is the transfer of oxygen from HO_{3} to a reactant. Assuming a gas kinetic reaction rate, this reactant would have to have a number density at least on the order of 10^{13} molecule cm^{-3} to compete with dissociation of HO_{3}.

Acknowledgment. The authors would like to thank all the members of our research group for discussion on this work, especially Jaron Hansen for his thoughtful suggestions.
JA991001Y

[^0]: (1) Clyne, M. A. A.; Monkhouse P. J. Chem. Soc., Faraday Trans. 2 1977, 73, 298-309.
 (2) Lee, J. H.; Michael, J. V.; Payne, W. A., Jr.; Stief, J. J. Chem. Phys. 1978, 69, 350-353.
 (3) Keyser, L. F. J. Phys. Chem. 1979, 83, 645-648.
 (4) Finlayson-Pitts, B. J.; Kleindiest, T. E. J. Chem. Phys. 1979, 70, 4804-4806.
 (5) Howard, C. J.; Finlayson-Pitts, B. J. J. Chem. Phys. 1980, 72, 38423843.
 (6) Washida, N.; Akimoto, H.; Okuda, M. J. Chem. Phys. 1980, 72, 5781-5783.
 (7) Finlayson-Pitts, B. J.; Kleindiest, T. E.; Ezell, J. J.; Toohey, D. W. J. Chem. Phys. 1980, 74, 4533-4543.
 (8) Washida, N.; Akimoto, H.; Okuda, M. Bull. Chem. Soc. Jpn. 1980, 53, 3496-3503.
 (9) Force, A. P.; Wiesenfeld, J. R. J. Chem. Phys. 1981, 70, 17181723.
 (10) Dodonov, A. F.; Zelenov, V. V.; Kukui, A. S.; Tal'Rose, E. A. P. V. L. Khim. Fiz. 1985, 4, 1335-1343.
 (11) Blint, R. J.; Newton, M. D. J. Chem. Phys. 1973, 59, 6220.
 (12) Chen, M. M. L.; Wetmore, R. W.; Schaefer, H. F., III J. Chem. Phys. 1981, 74, 2938.
 (13) Mathisen, K. B.; Gropen, O.; Kamcke, P. N. S.; Wehlgren, U. Acta Chem. Scand. A 1983, 37, 817-822.
 (14) Mathisen, K. B.; Siegbahn, P. M. Chem. Phys. 1984, 90, 225.
 (15) Dupuis, M.; Fitzgerald, G.; Lester, W. A., Jr.; Schaefer, H. F., III J. Chem. Phys. 1986, 85, 2691-2697.
 (16) Vincent, M. A.; Hillier, I. H. J. Phys. Chem 1995, 99, 3109-3113. (17) Verandas, A. J. C.; Yu, H. G. Mol. Phys. 1997, 91, 301-318.

[^1]: (18) Jungkamp, T. P. W.; Seinfeld, J. H. Chem. Phys. Lett. 1996, 257, 15-22.
 (19) Speranza, M. Inorg. Chem. 1996, 35, 6140-6151.
 (20) Sridharan, U. C.; Klein, F. S.; Kaufman, F. J. Chem. Phys. 1985, 82, 592-593.
 (21) Wang; W.; González-Jonte, R.; Varandas, A. J. C. J. Phys. Chem 1998, 102, 6935-6941.

[^2]: (22) GAUSSIAN 94, Revision D.2; Frisch, M. J.; Trucks, G. W.; Schlegel, H. G.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; GAUSSIAN, Inc.: Pittsburgh, PA, 1995.
 (23) Becke, A. M. J. Chem. Phys. 1993, 98, 5648.
 (24) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089-10094.
 (25) Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705-10707.
 (26) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 1583715845.
 (27) Raghavachari, K.; Trucks, G. W.; Pople. J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.

[^3]: (28) Xie, Y.; Schaefer, H. F., III J. Chem. Phys. 1993, 94, 2057.
 (29) Aloisio, S.; Francisco, J. S. J. Phys. Chem 1998, 102, 1899-1902.

[^4]: (30) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, Evaluation No.12; National Aeronautics and Space Administra-tion-Jet Propulsion Laboratory: Pasadena, 1997.

[^5]: (31) Troe, J. J. Chem. Phys. 1977, 66, 4745.
 (32) Troe, J. J. Chem. Phys. 1977, 66, 4758.
 (33) Patrick, R.; Golden, D. M. Int. J. of Chem. Kinet. 1983, 15, 11891227.

